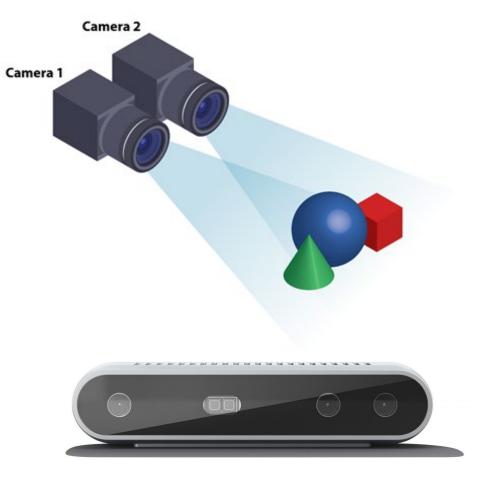
ADVANCED MATERIAL HANDLING WITH New Sony DepthSenseTM ToF Technology

Jenson Chang Product Marketing November 7, 2018

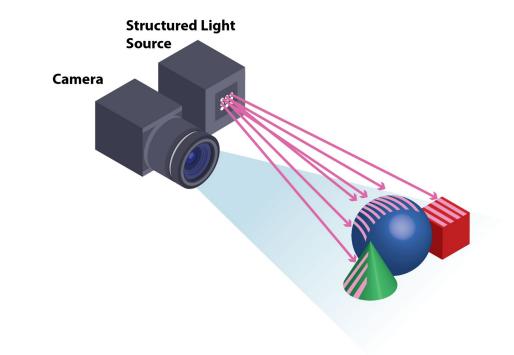
3D SENSING APPLICATIONS



3D SENSING TECHNIQUES

STEREO VISION

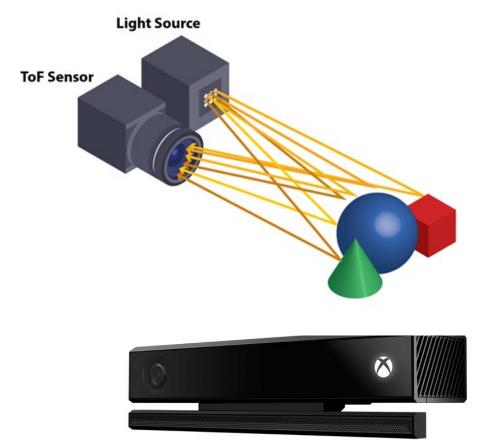
- Extracts depth information by matching the same point in two images
- Can use a pattern projector to add texture
- Suffers from occlusion object seen by one camera but not the other


Example: Intel® RealSense™ D415

3D SENSING TECHNIQUES

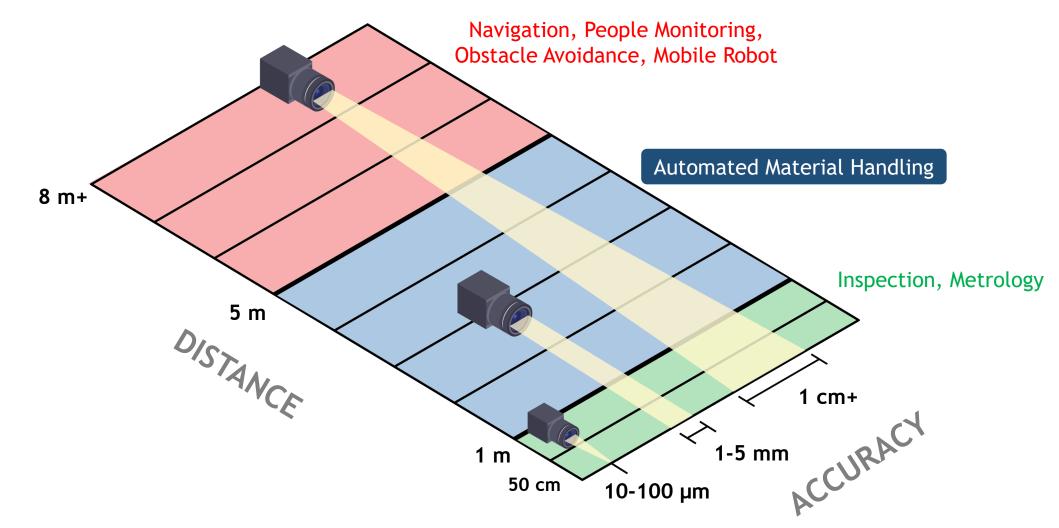
STRUCTURED LIGHT

- Projects a light pattern on the object. Uses the pattern distortion on the object to reconstruct the object shape
- Light source can be laser, IR or visible light
- Higher quality measurement but requires calibration and resolution limited by light source



3D SENSING TECHNIQUES

TIME OF FLIGHT


- Measures time it takes for the emitted light to be reflected. Two techniques, one measure time directly, one measures phase difference of the emitted and received signal.
- Light source can be laser, IR or visible light
- Multipath emitted light is reflected from more than one path
- Less expensive and no in field calibration required

Example: Microsoft Kinect 2

MARKET SEGMENT BY APPLICATION

AUTOMATED MATERIALS HANDLING

Challenges with existing solutions in automated materials handling

- Sensitive to ambient light
- Challenges with certain packaging
- High precision systems are expensive
- Some systems require in-field calibration required
- High CPU resources needed for depth processing

Sensitivity to sunlight from window or factory doors open/closing

Challenges with capturing depth data for packaging that are shiny, reflective or clear

CURRENT SOLUTIONS FOR MATERIAL HANDLING

	STEREO VISION (PASSIVE)	STRUCTURED LIGHT	TIME-OF-FLIGHT	
Working Distance	Limited by baseline	Limited by baseline	Scalable with light source	
Depth Accuracy	Low	High	Medium	
Depth Map Resolution	Limited by texture of Limited by light scene pattern		Full resolution	
In-field Calibration Needed	Sometimes	Sometimes	No	
Size	Increase with working distance	Increase with working distance	Compact	
Cost	Low	High	Medium	

VISION LABS

SONY DEPTHSENSE

SONY Acquire in 2015 SoftKinetic

- Sony has combined SoftKinetic's ToF technology with its own backside-illuminated technology to create the IMX556
- Sony's backside-illuminated technology has better light collection efficiency in NIR compared to front-illuminated sensors
- Phase detection speed is improved, enabling higher modulation frequency

Sony DepthSense IMX556PLR CMOS

Sensor Size	8mm diagonal (1/2 type)	
Resolution	640 (H) x 480 (V), VGA	
Pixel Size	10 um (H) x 10 um (V)	
Framerate	60fps @ full resolution	

HIGH RESOLUTION & HIGH SPEED

640 x 480 @ 60 fps, higher resolution than most ToF cameras

INCREASED PRECISION

Standard deviation σ < 2.5mm at 1m distance

BETTER PERFORMANCE WITHOUT PAYING MORE

Lower cost compared to 3D cameras with similar performance

Helios ToF 3D Camera Prototype 55mm x 55mm x 76mm

LUCID HELIOS TOF 3D CAMERA

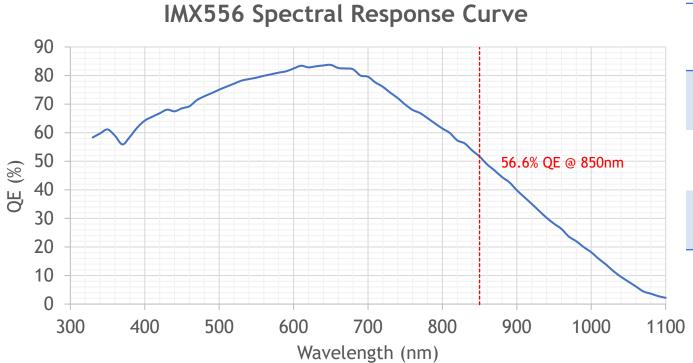
Features		
Working Range	Three operating modes1. Less than 1.5m with 100MHz modulation frequency2. Less than 3m with 50MHz modulation frequency3. Less than 6m with 25MHz modulation frequency	
Accuracy	< 5mm from 0.3m to 1.5m in Mode 1 (preliminary)	
Precision	Sigma < 2.5mm at 1m in Mode 1 (preliminary)	
Lens Field of View	65° x 46° (nominal)	
Illumination	4 x VCSEL laser diodes @ 850nm	
Digital Interface	1 Gigabit Ethernet with M12 connector IEC 61076-2-109	
GPIO Interface	8-pin M8 connector IEC 61076-2-104	
I/O ports	1 input, 1 output, 2 bidirectional	
Dimension	55 x 55 x 76mm	
Lens Mount	Integrated S-mount lens	
Operating Temperature	-10º to 50º C	
Weight	280g	
Power Consumption	TBD	
Conformity	CE, RoHS, FCC, WEEE, Eye safety IEC 60825-1:2014	

LUCID VISION LABS, INC.

Features			
Compliance	GigE Vision 2.0, GenICam 3D		
Exposure Control	Manual, Auto, External Trigger Signal		
Synchronization	via PTP		
User Sets	1 Default, 2 Custom		
Output Formats	3D Point Cloud, Intensity and Confidence		
OS Support	Windows and Linux		
Software Support	Arena SDK, C++, C and C#		

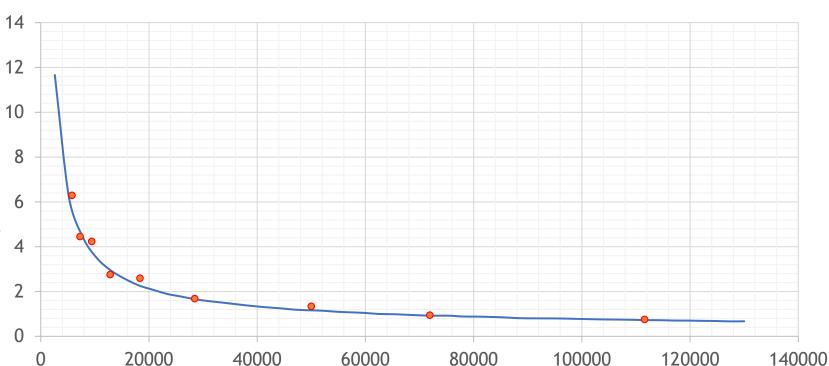
GIGE VISION AND GENICAM 3D SUPPORT

Description
Coordinate of the 3D image data with C being the depth data
Coordinate of the 3D image data with coordinate A only
Coordinate of the 3D image data with coordinate B only
Coordinate of the 3D image data with coordinate C only
Confidence of the pixel value
False color for depth visualization (red=closest, blue=furthest)



- Camera control and image acquisition
- Data visualization such as point cloud, depth map, confidence map

	A+B Mode	Α	В
Saturation Capacity	271508 e-	134718e-	138638 e-
Temporal Dark Noise (Read Noise)	117.3 e-	81.5 e-	83.0 e-
Dynamic Range	67.05 dB	63.9 dB	64.0 dB



Depth Noise (mm)

PRELIMINARY DATA

Simulated conditions:

- 80% modulation contrast
- 82 e- read noise
- 10 bit quantization

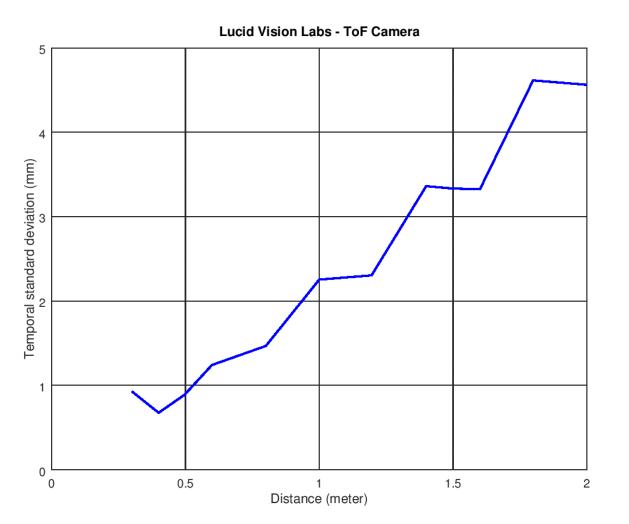
Total Signal (A+B), electrons

Helios Measured Data

Sensor Model Data vs. Helios Measured Data

----Sensor Model Data

LUCID VISION LABS, INC.


TEMPORAL PRECISION

Test Conditions

- 4 lasers, at 1W optical power each
- Room light off
- Exposure time = 1000 us for all tested distances except for 30 cm
- 11x11 pixels in image center
- Standard deviation over 100 images

Results

- σ = 2.25 mm at 1 meter
- σ = 4.56 mm at 2 meters

νιςιον

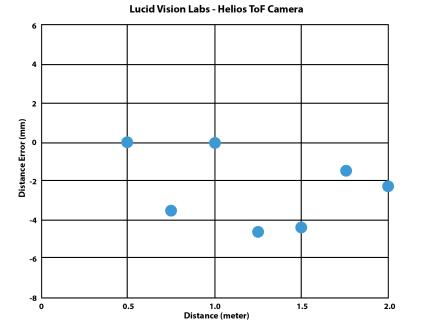
PRELIMINARY DATA

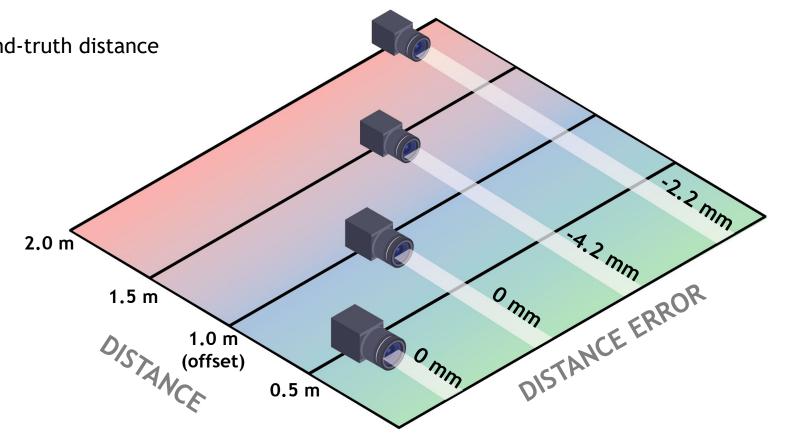
Test Conditions

- Same conditions as previous
- Standard deviation over 11x11 pixels in image center

Results

- σ = 2.34 mm at 1 meter
- σ = 4.36 mm at 2 meters

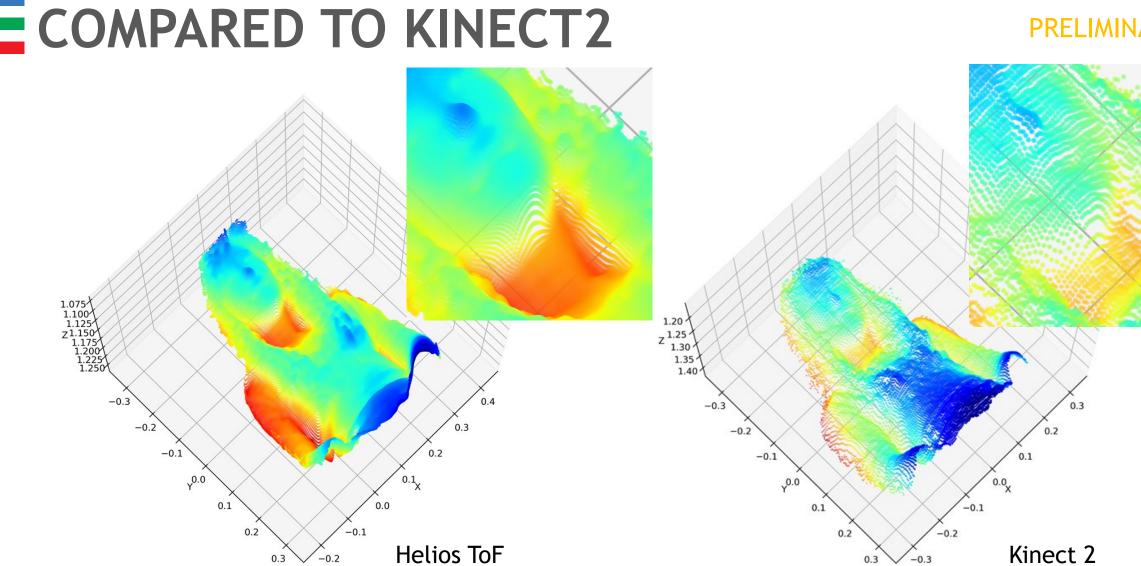




LUCID VISION LABS, INC.

Same conditions as previous
Difference between measured and ground-truth distance

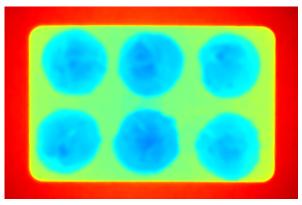
• Offset adjusted for 1 meter



ACCURACY

Test Conditions

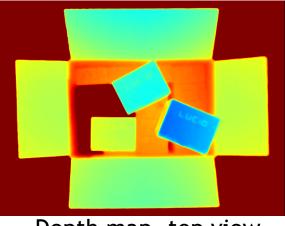
PRELIMINARY DATA


LUCID VISION LABS, INC.

Sample object: Muffins

Depth map, top view

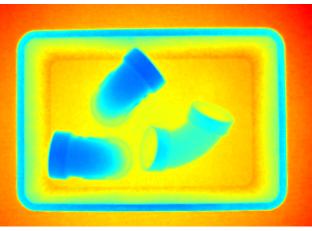
Point cloud, angled view

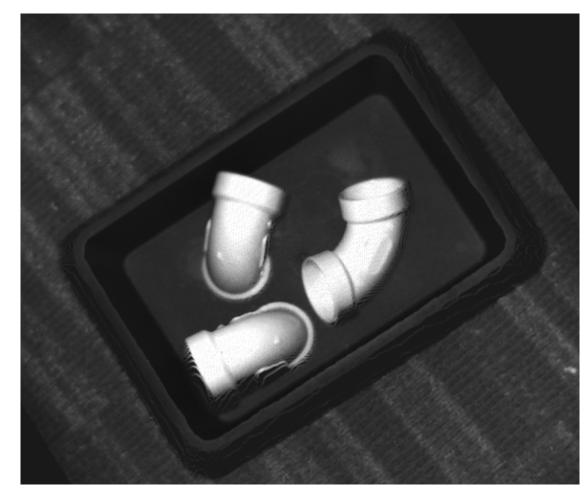


Sample object: Boxes

Depth map, top view

Point cloud, angled view





Sample object: PVC pipes

Depth map, top view

Point cloud, angled view

- LUCID Vision Labs is a new company that designs and manufactures innovative machine vision products that creatively leverage new technology to deliver exceptional value to our customers.
- Founded in January 2017 in Canada, first product shipped in March 2018
- Headquartered in Canada, with regional sales and support offices in Germany, Japan and China

Headquarter in Richmond, BC, Canada Engineering, sales, support, and manufacturing

European office in Ilsfeld, Germany Sales and support

Be Inspired. Think Lucid.

THANK YOU

COME TO BOOTH 1C62 FOR LIVE DEMONSTRATION